Chapter 7 Multi-Environment Trial Analysis

7.1 Section 1: Steps in analysis using R

  1. Install R packages needed
library(ggplot2)
library(emmeans)
library(doBy)
library(lmerTest)
library(multcompView)
  1. Import data
vartrial <- read.csv("C:/Users/Admin/Desktop/mozvartrial.csv")
  1. Check and update data
summary(vartrial)
str(vartrial)

vartrial$variety<-factor(vartrial$variety)
vartrial$trial<-factor(vartrial$trial)
  1. Explore data
ggplot(data=vartrial,aes(y=yield,x=varietyname)) +
  geom_point(aes(colour=environment))

ggplot(data=vartrial,aes(y=yield,x=environment,colour=varietyname,group=varietyname)) +
  stat_summary(geom="line")

ggplot(data=vartrial,aes(y=yield,x=varietyname))+
  geom_boxplot(aes(colour=varietyname))+facet_wrap(~environment)


summaryBy(yield~varietyname+environment, data=vartrial, FUN=c(mean,median,sd))
  1. Specify a model for data
gxemodel1<-lmer(yield~varietyname*environment+(1|rep:environment), data=vartrial)

gxemodel2<-lmer(yield~varietyname*environment+(1|rep:environment)+(1|rep:environment:row)+(1|rep:environment:column), data=vartrial)

anova(gxemodel2,gxemodel1)
  1. Check the model
plot(gxemodel2)

qqnorm(resid(gxemodel2))
qqline(resid(gxemodel2))
  1. Interpret the model
anova(gxemodel2, ddf="Kenward-Roger")
print(VarCorr(gxemodel2), comp=("Variance"))

ranova(gxemodel2)
  1. Present the results from the model
emmip(gxemodel2,~varietyname|environment,CIs = TRUE)

emmip(gxemodel2,~varietyname|environment,CIs = TRUE)


emmip(gxemodel2,varietyname~environment)+coord_flip()

emmeans(gxemodel2, ~varietyname|environment)

cld(emmeans(gxemodel2, ~varietyname|environment))

estimatedmeans<-data.frame(cld(emmeans(gxemodel2, ~varietyname|environment)))
estimatedmeans
library(reshape2)
dcast(varietyname~environment,value.var="emmean",data=estimatedmeans)

7.2 Section 2: Explanation of Steps

7.2.1 1. Install R packages needed

A number of packages following packages were used during data exploration and analysis. For a general introduction explaining what R packages are and how they work, this is a really useful guide https://www.datacamp.com/community/tutorials/r-packages-guide. For each of these packages to be installed, using install.packages(), this requires a reliable internet connection and a correctly installed version of R and RStudio. If you are having difficulties installing these packages please ask for help.

install.packages("ggplot2")
library(ggplot2)

ggplot2 This package provides a powerful graphics language for creating elegant and complex graphs in R.

install.packages("emmeans")
library(emmeans)

emmeans Estimated marginal means (also known as least squares means) helps provide expected mean values and confidence intervals from statistical models.

install.packages("doBy")
library(doBy)

doByAllows easy production of summary statistic tables

install.packages("lmerTest")
library(lmerTest)

lmerTest Allows produce of flexible mixed effects regression models, similar to REML in Genstat.

install.packages("multcompView")
library(multcompView)

multcompView allows for mean seperation methods on analyses

7.2.2 2. Import data

Our data set saved as a CSV file, so we can use the read.csv commmand to import the data. We are going to assign the name of the data with R to be fallow2. Remember in R Studio you could also use the “Import Dataset” menu to import a dataset.

vartrial <- read.csv("C:/Users/Admin/Desktop/mozvartrial.csv")

7.2.3 3. Check and update data

When reading data into R it is always useful to check that data is in the format expected. How many variables are there? How many rows? How have the columns been read in? The summary command can help to show if the data is being treated correctly.

summary(vartrial)
##      order                   environment     trial        rep      
##  Min.   :  1.00   ChokweIrrigado   :48   Min.   :1   Min.   :1.00  
##  1st Qu.: 84.75   ChokweStressado  :48   1st Qu.:2   1st Qu.:1.75  
##  Median :168.50   Macia_Adelino    :48   Median :4   Median :2.50  
##  Mean   :168.50   Macia_Machava    :48   Mean   :4   Mean   :2.50  
##  3rd Qu.:252.25   Nhacoongo        :48   3rd Qu.:6   3rd Qu.:3.25  
##  Max.   :336.00   UmbeluziIrrigado :48   Max.   :7   Max.   :4.00  
##                   UmbeluziStressado:48                             
##       row            column     variety        varietyname 
##  Min.   :1.000   Min.   :1   Min.   : 1.00   INIA-152: 28  
##  1st Qu.:2.000   1st Qu.:1   1st Qu.: 3.75   INIA-41 : 28  
##  Median :2.500   Median :2   Median : 6.50   INIA-73 : 28  
##  Mean   :2.503   Mean   :2   Mean   : 6.50   IT-16   : 28  
##  3rd Qu.:3.250   3rd Qu.:3   3rd Qu.: 9.25   IT-18   : 28  
##  Max.   :4.000   Max.   :3   Max.   :12.00   IT00K-96: 28  
##                                              (Other) :168  
##     plantnum          yield       
##  Min.   :  4.00   Min.   :  78.2  
##  1st Qu.: 27.00   1st Qu.: 933.3  
##  Median : 44.00   Median :1322.2  
##  Mean   : 50.90   Mean   :1613.9  
##  3rd Qu.: 69.25   3rd Qu.:2253.3  
##  Max.   :141.00   Max.   :4426.7  
## 

Where data is being treated as a numeric variable (i.e. a number) summary provides statistics like the mean, min and max. Where data is being treated like a categorical variable (i.e. a group) then summary provides frequency tables.

From the results we can see that the variables rep and plot are being considered as numeric variables. However these are grouping variables, not number variables, the numbers used are simply codes. If we do not rectify this then our analysis later will be incorrect and meaningless.
This can also be seen more explicitly using the str() function.

str(vartrial)
## 'data.frame':    336 obs. of  10 variables:
##  $ order      : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ environment: Factor w/ 7 levels "ChokweIrrigado",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ trial      : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ rep        : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ row        : int  1 1 1 2 2 2 3 3 3 4 ...
##  $ column     : int  1 2 3 3 2 1 1 2 3 3 ...
##  $ variety    : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ varietyname: Factor w/ 12 levels "INIA-152","INIA-41",..: 12 7 3 11 5 9 6 2 8 4 ...
##  $ plantnum   : int  66 97 77 83 112 106 127 70 128 96 ...
##  $ yield      : num  3404 640 2516 2844 3040 ...

So we need to convert these variables into factors.

vartrial$variety<-factor(vartrial$variety)
vartrial$trial<-factor(vartrial$trial)

These commands take the column rep within the data frame fallow, converts into a factor and saves the result in a column called rep within fallow.

7.2.4 4. Explore data

7.2.4.1 Plots

We are now interesting in assessing the relationship between yield and striga - so we want to produce a plot of striga against yield, with different coloured points denoting each treatment.

ggplot(data=vartrial,aes(y=yield,x=varietyname)) +
  geom_point(aes(colour=environment))

We can see from the distribution of striga that there are some farms with very high levels of striga, and some farms with no striga. The big range of values makes it hard to make interpretations from this plot, so taking a square root transformation may help to visualise the relationship. A log transformation will not help here because of the large number of 0 values of striga.

ggplot(data=vartrial,aes(y=yield,x=environment,colour=varietyname,group=varietyname)) +
  stat_summary(geom="line")
## No summary function supplied, defaulting to `mean_se()

ggplot(data=vartrial,aes(y=yield,x=varietyname))+
  geom_boxplot(aes(colour=varietyname))+facet_wrap(~environment)

7.2.4.2 Summary Statistics

To produce summary statistics, by group, there are many options within R. One option is to use the summaryBy function, from the doBy library. The code used for this is quite similar to the code we will use to produce models in a later step.

summaryBy(yield~varietyname+environment, data=vartrial, FUN=c(mean,median,sd))
##     varietyname       environment yield.mean yield.median   yield.sd
## 1      INIA-152    ChokweIrrigado   3331.125      3515.55  754.04696
## 2      INIA-152   ChokweStressado   3415.575      3364.45  797.44230
## 3      INIA-152     Macia_Adelino   1253.325      1266.65   89.13744
## 4      INIA-152     Macia_Machava   1260.000      1286.65  303.34677
## 5      INIA-152         Nhacoongo   1035.550       951.10  272.47465
## 6      INIA-152  UmbeluziIrrigado   2211.100      2422.20  607.63851
## 7      INIA-152 UmbeluziStressado   2404.450      2284.45  341.78953
## 8       INIA-41    ChokweIrrigado   2784.425      2920.00  450.29839
## 9       INIA-41   ChokweStressado   2231.100      2195.55  638.69332
## 10      INIA-41     Macia_Adelino   1466.650      1380.00  303.46151
## 11      INIA-41     Macia_Machava   1640.000      1613.35  113.66879
## 12      INIA-41         Nhacoongo    691.100       631.10  319.13814
## 13      INIA-41  UmbeluziIrrigado   1808.875      1408.85 1134.39461
## 14      INIA-41 UmbeluziStressado   1837.775      1746.65  343.30332
## 15      INIA-73    ChokweIrrigado   2377.800      2253.35  753.14137
## 16      INIA-73   ChokweStressado   2602.225      2684.45  330.98096
## 17      INIA-73     Macia_Adelino   1035.550      1044.45   45.33553
## 18      INIA-73     Macia_Machava    866.675       913.35  310.06045
## 19      INIA-73         Nhacoongo   1080.000      1000.00  306.07200
## 20      INIA-73  UmbeluziIrrigado   1377.775      1595.55  529.48470
## 21      INIA-73 UmbeluziStressado   1357.775      1315.55  217.85558
## 22        IT-16    ChokweIrrigado   2740.025      2755.60  344.23188
## 23        IT-16   ChokweStressado   2717.775      2853.35  698.26615
## 24        IT-16     Macia_Adelino    911.100       915.55   76.47932
## 25        IT-16     Macia_Machava    916.650       920.00   19.98891
## 26        IT-16         Nhacoongo    955.575       897.80  350.62212
## 27        IT-16  UmbeluziIrrigado   1660.000      1760.00  574.94960
## 28        IT-16 UmbeluziStressado   1424.450      1440.00  375.91817
## 29        IT-18    ChokweIrrigado   3020.000      2773.35  786.76965
## 30        IT-18   ChokweStressado   3204.425      3168.85  242.29866
## 31        IT-18     Macia_Adelino    991.100      1002.20  180.31386
## 32        IT-18     Macia_Machava   1200.000      1193.35  136.39377
## 33        IT-18         Nhacoongo   1168.925      1151.15  236.80500
## 34        IT-18  UmbeluziIrrigado    980.000       884.45  347.49929
## 35        IT-18 UmbeluziStressado   1444.425      1475.55  282.45094
## 36     IT00K-96    ChokweIrrigado   2757.775      2866.65 1256.70666
## 37     IT00K-96   ChokweStressado   3355.550      3311.10  531.49591
## 38     IT00K-96     Macia_Adelino    751.100       822.20  259.73130
## 39     IT00K-96     Macia_Machava   1020.000      1026.65  372.79207
## 40     IT00K-96         Nhacoongo   1015.550      1026.65   60.48121
## 41     IT00K-96  UmbeluziIrrigado    926.675       862.25  709.53665
## 42     IT00K-96 UmbeluziStressado    651.125       648.90  316.04321
## 43   IT69KD-901    ChokweIrrigado    653.325       720.00  207.66347
## 44   IT69KD-901   ChokweStressado    386.200       466.65  213.00778
## 45   IT69KD-901     Macia_Adelino    568.900       457.80  452.71745
## 46   IT69KD-901     Macia_Machava    700.000       613.35  321.57621
## 47   IT69KD-901         Nhacoongo    513.350       502.25  153.32507
## 48   IT69KD-901  UmbeluziIrrigado   1351.100      1244.45 1094.55845
## 49   IT69KD-901 UmbeluziStressado    604.475       502.25  323.69258
## 50  IT97K-284-4    ChokweIrrigado   2971.125      3048.90  419.96714
## 51  IT97K-284-4   ChokweStressado   2860.000      2920.00  249.32475
## 52  IT97K-284-4     Macia_Adelino    755.575       811.15  196.06625
## 53  IT97K-284-4     Macia_Machava    686.675       580.00  615.51677
## 54  IT97K-284-4         Nhacoongo   1119.975      1146.65  142.04549
## 55  IT97K-284-4  UmbeluziIrrigado    866.675       866.70  383.10437
## 56  IT97K-284-4 UmbeluziStressado    815.550       831.10  392.19694
## 57 IT98K-1105-5    ChokweIrrigado   3075.575      3053.35  233.25939
## 58 IT98K-1105-5   ChokweStressado   3357.775      3306.65  332.37678
## 59 IT98K-1105-5     Macia_Adelino   1062.225      1077.75   84.55315
## 60 IT98K-1105-5     Macia_Machava   1096.675      1153.35  218.37633
## 61 IT98K-1105-5         Nhacoongo   1371.075      1337.75  136.23733
## 62 IT98K-1105-5  UmbeluziIrrigado   2040.000      2284.45  731.99020
## 63 IT98K-1105-5 UmbeluziStressado   2151.100      2275.55  472.27515
## 64 IT98K-1111-1    ChokweIrrigado   1960.000      2048.90  285.44062
## 65 IT98K-1111-1   ChokweStressado   2224.425      2133.30  200.50779
## 66 IT98K-1111-1     Macia_Adelino    671.100       688.90   70.00248
## 67 IT98K-1111-1     Macia_Machava   1120.000      1153.35  240.23445
## 68 IT98K-1111-1         Nhacoongo    951.100      1017.75  213.94711
## 69 IT98K-1111-1  UmbeluziIrrigado   1546.650      1644.40  544.76743
## 70 IT98K-1111-1 UmbeluziStressado   1322.250      1355.60  412.83383
## 71      UC-CB27    ChokweIrrigado   2437.775      2400.00  334.09723
## 72      UC-CB27   ChokweStressado   2460.000      2404.45  187.36800
## 73      UC-CB27     Macia_Adelino   1004.425       988.85  170.19960
## 74      UC-CB27     Macia_Machava   1160.000      1266.65  241.72283
## 75      UC-CB27         Nhacoongo    522.225       480.00  261.37532
## 76      UC-CB27  UmbeluziIrrigado   1444.450      1391.10  415.93051
## 77      UC-CB27 UmbeluziStressado   1342.225      1400.00  329.96221
## 78      UC-CB46    ChokweIrrigado   3626.675      3537.80  273.99739
## 79      UC-CB46   ChokweStressado   3631.100      3666.65  470.28565
## 80      UC-CB46     Macia_Adelino   1163.350      1153.35  134.37868
## 81      UC-CB46     Macia_Machava   1223.325      1313.35  193.65472
## 82      UC-CB46         Nhacoongo   1228.850      1244.40   99.61126
## 83      UC-CB46  UmbeluziIrrigado   1904.450      1964.45  580.47640
## 84      UC-CB46 UmbeluziStressado   1731.100      1693.30  245.60479

7.2.5 5. Specify a model for data

In this design, an RCBD, we have one treatment factor, “treat”, and one layout factor “rep”. More information about model fitting can be found in section 2.

gxemodel1<-lmer(yield~varietyname*environment+(1|rep:environment), data=vartrial)

gxemodel2<-lmer(yield~varietyname*environment+(1|rep:environment)+(1|rep:environment:row)+(1|rep:environment:column), data=vartrial)

anova(gxemodel2,gxemodel1)
## refitting model(s) with ML (instead of REML)
## Data: vartrial
## Models:
## gxemodel1: yield ~ varietyname * environment + (1 | rep:environment)
## gxemodel2: yield ~ varietyname * environment + (1 | rep:environment) + (1 | 
## gxemodel2:     rep:environment:row) + (1 | rep:environment:column)
##           Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
## gxemodel1 86 5042.2 5370.5 -2435.1   4870.2                             
## gxemodel2 88 5025.2 5361.1 -2424.6   4849.2 20.977      2  2.785e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R is unlike many other software packages in how it fits models. The best way of handling models in R is to assign the model to a name (in this case rcbdmodel1) and then ask R to provide different sorts of output for this model. When you run the above line you will get now output from the data - this is what we expected to see!

7.2.6 6. Check the model

Before interpretting the model any further we should investigate the model validity, to ensure any conclusions we draw are valid. There are 3 assumptions that we can check for using standard model checking plots. 1. Homogeneity (equal variance) 2. Values with high leverage 3. Normality of residuals

The function plot() when used with a model will plot the fitted values from the model against the expected values.

plot(gxemodel2)

The residual Vs fitted plot is a scatter plot of the Residuals on the y-axis and the fitted on the x-axis and the aim for this plot is to test the assumption of equal variance of the residuals across the range of fitted values. Since the residuals do not funnel out (to form triangular/diamond shape) the assumption of equal variance is met.

We can also see that there are no extreme values in the residuals which might be potentially causing problems with the validity of our conclusions (leverage)

To assess the assumption of normality we can produce a qqplot. This shows us how closely the residuals follow a normal distribution - if there are severe and syste,matic deviations from the line then we may want to consider an alternative distribution.

qqnorm(resid(gxemodel2))
qqline(resid(gxemodel2))

In this case the residuals seem to fit the assumption required for normality.

7.2.7 7. Interpret Model

The anova() function only prints the rows of analysis of variance table for treatment effects when looking at a mixed model fitted using lmer().

anova(gxemodel2, ddf="Kenward-Roger")
## Type III Analysis of Variance Table with Kenward-Roger's method
##                           Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)
## varietyname             37176902 3379718    11 212.07 33.1312 < 2.2e-16
## environment             20533476 3422246     6  21.00 33.5705 1.038e-09
## varietyname:environment 37168495  563159    66 184.90  5.5128 < 2.2e-16
##                            
## varietyname             ***
## environment             ***
## varietyname:environment ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ddf=Kenward-Roger tells R which method to use for determining the calculations of the table; this option matches the defaults found within SAS or Genstat. The ANOVA table suggests a highly significant effect of the treatment on the yield.

To obtain the residual variance, and the variance attributed to the blocks we need an additional command. From these number it is possible to reconstruct a more classic ANOVA table, if so desired.

print(VarCorr(gxemodel2), comp=("Variance"))
##  Groups                 Name        Variance
##  rep:environment:row    (Intercept)   4500.6
##  rep:environment:column (Intercept)  36719.8
##  rep:environment        (Intercept)  45991.9
##  Residual                           101942.0
ranova(gxemodel2)
## ANOVA-like table for random-effects: Single term deletions
## 
## Model:
## yield ~ varietyname + environment + (1 | rep:environment) + (1 | 
##     rep:environment:row) + (1 | rep:environment:column) + varietyname:environment
##                              npar  logLik    AIC     LRT Df Pr(>Chisq)    
## <none>                         88 -1914.8 4005.5                          
## (1 | rep:environment)          87 -1919.8 4013.6 10.1269  1  0.0014612 ** 
## (1 | rep:environment:row)      87 -1914.9 4003.8  0.2394  1  0.6246201    
## (1 | rep:environment:column)   87 -1920.8 4015.6 12.0793  1  0.0005098 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

7.2.8 8. Present the results from the model

To help understand what the significant result from the ANOVA table means we can produce several plots and tables to help us. First we can use the function emmip() to produce plots of the modelled results, including 95% confidence intervals.

emmip(gxemodel2,~varietyname|environment,CIs = TRUE)

Or alternatively

emmip(gxemodel2,~varietyname|environment,CIs = TRUE)

emmip(gxemodel2,varietyname~environment)+coord_flip()

To obtain the numbers used in creating this graph we can use the function emmeans.

emmeans(gxemodel2, ~varietyname|environment)
## environment = ChokweIrrigado:
##  varietyname     emmean       SE     df   lower.CL  upper.CL
##  INIA-152     3281.4112 212.8278 114.96 2859.83867 3702.9837
##  INIA-41      2897.8775 212.3522 113.73 2477.19888 3318.5562
##  INIA-73      2303.3229 213.5745 116.18 1880.31855 2726.3273
##  IT-16        2714.7860 213.4026 115.99 2292.11494 3137.4571
##  IT-18        2918.8710 212.7347 114.70 2497.47295 3340.2690
##  IT00K-96     2635.6529 213.4856 116.25 2212.82719 3058.4786
##  IT69KD-901    714.9043 213.2427 115.33  292.52460 1137.2840
##  IT97K-284-4  3066.1619 214.0881 117.31 2642.18359 3490.1402
##  IT98K-1105-5 3166.2457 212.7774 114.03 2744.73650 3587.7549
##  IT98K-1111-1 1968.2274 213.8460 117.32 1544.72864 2391.7262
##  UC-CB27      2473.2456 213.3913 115.72 2050.58653 2895.9046
##  UC-CB46      3594.9186 212.7865 114.45 3173.40803 4016.4291
## 
## environment = ChokweStressado:
##  varietyname     emmean       SE     df   lower.CL  upper.CL
##  INIA-152     3334.8789 212.7797 115.10 2913.40717 3756.3507
##  INIA-41      2275.2091 212.8143 114.74 1853.65490 2696.7634
##  INIA-73      2678.5428 212.7546 114.72 2257.10603 3099.9796
##  IT-16        2653.7807 213.7745 116.82 2230.40488 3077.1566
##  IT-18        3278.5687 213.1497 115.45 2856.37770 3700.7596
##  IT00K-96     3356.0290 212.3933 113.73 2935.26899 3776.7891
##  IT69KD-901    408.5862 212.4452 114.14  -12.26047  829.4328
##  IT97K-284-4  2818.0288 213.5762 116.35 2395.02778 3241.0299
##  IT98K-1105-5 3365.5194 213.2964 115.80 2943.05141 3787.9874
##  IT98K-1111-1 2243.5917 213.8507 116.61 1820.05673 2667.1267
##  UC-CB27      2464.3505 213.2879 115.95 2041.90479 2886.7962
##  UC-CB46      3569.0641 213.3254 115.68 3146.53401 3991.5941
## 
## environment = Macia_Adelino:
##  varietyname     emmean       SE     df   lower.CL  upper.CL
##  INIA-152     1284.9275 213.4738 116.33  862.12853 1707.7265
##  INIA-41      1438.7231 213.5401 116.02 1015.78093 1861.6653
##  INIA-73      1020.4183 212.7172 114.25  599.03700 1441.7996
##  IT-16         862.7489 213.2524 115.43  440.35378 1285.1440
##  IT-18         965.1424 212.7224 114.26  543.75121 1386.5335
##  IT00K-96      807.3334 213.7587 116.26  383.96731 1230.6995
##  IT69KD-901    585.0126 212.7661 114.94  163.56158 1006.4636
##  IT97K-284-4   765.4647 213.0184 115.20  343.52395 1187.4054
##  IT98K-1105-5 1029.6298 212.9650 115.19  607.79455 1451.4650
##  IT98K-1111-1  674.6159 213.4223 116.51  251.92560 1097.3063
##  UC-CB27      1011.1723 213.0471 114.83  589.16026 1433.1844
##  UC-CB46      1190.5311 213.4851 115.80  767.68915 1613.3730
## 
## environment = Macia_Machava:
##  varietyname     emmean       SE     df   lower.CL  upper.CL
##  INIA-152     1239.1098 213.7555 116.53  815.76018 1662.4593
##  INIA-41      1663.7967 213.0438 115.98 1241.83586 2085.7575
##  INIA-73       850.2913 213.5306 116.23  427.37579 1273.2069
##  IT-16         967.4732 212.9415 114.59  545.66093 1389.2855
##  IT-18        1148.5561 213.4814 115.88  725.72450 1571.3877
##  IT00K-96     1040.3047 212.9071 114.73  618.56630 1462.0431
##  IT69KD-901    674.8924 213.3063 115.59  252.39644 1097.3884
##  IT97K-284-4   680.9149 212.3123 114.12  260.33064 1101.4992
##  IT98K-1105-5 1067.2538 212.8659 115.40  645.62284 1488.8848
##  IT98K-1111-1 1164.8208 213.6071 116.73  741.77309 1587.8685
##  UC-CB27      1146.1091 213.5501 116.75  723.17485 1569.0434
##  UC-CB46      1246.4771 213.2155 115.18  824.14537 1668.8089
## 
## environment = Nhacoongo:
##  varietyname     emmean       SE     df   lower.CL  upper.CL
##  INIA-152     1035.3705 213.7555 116.53  612.02091 1458.7201
##  INIA-41       683.1821 213.0438 115.98  261.22132 1105.1429
##  INIA-73      1093.8123 213.5306 116.23  670.89675 1516.7278
##  IT-16         949.0727 212.9415 114.59  527.26042 1370.8850
##  IT-18        1196.2705 213.4814 115.88  773.43886 1619.1021
##  IT00K-96      995.8209 212.9071 114.73  574.08247 1417.5593
##  IT69KD-901    506.8616 213.3063 115.59   84.36557  929.3576
##  IT97K-284-4  1118.8071 212.3123 114.12  698.22285 1539.3914
##  IT98K-1105-5 1377.8540 212.8659 115.40  956.22305 1799.4850
##  IT98K-1111-1  930.7708 213.6071 116.73  507.72304 1353.8185
##  UC-CB27       529.4971 213.5501 116.75  106.56281  952.4313
##  UC-CB46      1235.9555 213.2155 115.18  813.62372 1658.2873
## 
## environment = UmbeluziIrrigado:
##  varietyname     emmean       SE     df   lower.CL  upper.CL
##  INIA-152     2112.2016 213.3949 115.85 1689.54033 2534.8628
##  INIA-41      1842.2548 212.8510 115.20 1420.64580 2263.8638
##  INIA-73      1483.0058 212.9097 115.41 1061.28887 1904.7228
##  IT-16        1535.3689 213.6885 116.60 1112.15478 1958.5830
##  IT-18         927.1970 213.1870 115.02  504.91536 1349.4787
##  IT00K-96      810.6883 212.7889 114.99  389.19411 1232.1825
##  IT69KD-901   1424.4582 213.3224 115.55 1001.92884 1846.9875
##  IT97K-284-4   895.8138 212.9352 114.80  474.02221 1317.6055
##  IT98K-1105-5 2065.8614 212.8188 114.89 1644.30415 2487.4187
##  IT98K-1111-1 1542.8659 213.1575 115.62 1120.66581 1965.0659
##  UC-CB27      1475.3602 212.9806 114.65 1053.47306 1897.2474
##  UC-CB46      2002.6740 212.6761 115.11 1581.40786 2423.9402
## 
## environment = UmbeluziStressado:
##  varietyname     emmean       SE     df   lower.CL  upper.CL
##  INIA-152     2327.3996 213.0239 115.54 1905.46145 2749.3378
##  INIA-41      1919.5881 212.9661 115.41 1497.75935 2341.4169
##  INIA-73      1377.4359 213.6416 116.23  954.30071 1800.5712
##  IT-16        1450.3158 213.9875 117.16 1026.53077 1874.1008
##  IT-18        1400.5776 213.3006 116.21  978.11710 1823.0381
##  IT00K-96      565.3932 213.0577 115.40  143.38258  987.4039
##  IT69KD-901    657.5039 213.4439 115.55  234.73427 1080.2736
##  IT97K-284-4   801.4592 213.1804 115.54  379.21080 1223.7075
##  IT98K-1105-5 2130.4133 213.4059 115.47 1707.71546 2553.1112
##  IT98K-1111-1 1348.3902 212.6457 114.08  927.14379 1769.6366
##  UC-CB27      1328.3779 213.3563 115.76  905.78983 1750.9660
##  UC-CB46      1779.8452 213.5101 115.89 1356.95749 2202.7329
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95

And one method for conducting mean separation analysis, holding striga effect constant, we can use the function cld().

cld(emmeans(gxemodel2, ~varietyname*environment))
##  varietyname  environment          emmean       SE     df   lower.CL
##  IT69KD-901   ChokweStressado    408.5862 212.4452 114.14  -12.26047
##  IT69KD-901   Nhacoongo          506.8616 213.3063 115.59   84.36557
##  UC-CB27      Nhacoongo          529.4971 213.5501 116.75  106.56281
##  IT00K-96     UmbeluziStressado  565.3932 213.0577 115.40  143.38258
##  IT69KD-901   Macia_Adelino      585.0126 212.7661 114.94  163.56158
##  IT69KD-901   UmbeluziStressado  657.5039 213.4439 115.55  234.73427
##  IT98K-1111-1 Macia_Adelino      674.6159 213.4223 116.51  251.92560
##  IT69KD-901   Macia_Machava      674.8924 213.3063 115.59  252.39644
##  IT97K-284-4  Macia_Machava      680.9149 212.3123 114.12  260.33064
##  INIA-41      Nhacoongo          683.1821 213.0438 115.98  261.22132
##  IT69KD-901   ChokweIrrigado     714.9043 213.2427 115.33  292.52460
##  IT97K-284-4  Macia_Adelino      765.4647 213.0184 115.20  343.52395
##  IT97K-284-4  UmbeluziStressado  801.4592 213.1804 115.54  379.21080
##  IT00K-96     Macia_Adelino      807.3334 213.7587 116.26  383.96731
##  IT00K-96     UmbeluziIrrigado   810.6883 212.7889 114.99  389.19411
##  INIA-73      Macia_Machava      850.2913 213.5306 116.23  427.37579
##  IT-16        Macia_Adelino      862.7489 213.2524 115.43  440.35378
##  IT97K-284-4  UmbeluziIrrigado   895.8138 212.9352 114.80  474.02221
##  IT-18        UmbeluziIrrigado   927.1970 213.1870 115.02  504.91536
##  IT98K-1111-1 Nhacoongo          930.7708 213.6071 116.73  507.72304
##  IT-16        Nhacoongo          949.0727 212.9415 114.59  527.26042
##  IT-18        Macia_Adelino      965.1424 212.7224 114.26  543.75121
##  IT-16        Macia_Machava      967.4732 212.9415 114.59  545.66093
##  IT00K-96     Nhacoongo          995.8209 212.9071 114.73  574.08247
##  UC-CB27      Macia_Adelino     1011.1723 213.0471 114.83  589.16026
##  INIA-73      Macia_Adelino     1020.4183 212.7172 114.25  599.03700
##  IT98K-1105-5 Macia_Adelino     1029.6298 212.9650 115.19  607.79455
##  INIA-152     Nhacoongo         1035.3705 213.7555 116.53  612.02091
##  IT00K-96     Macia_Machava     1040.3047 212.9071 114.73  618.56630
##  IT98K-1105-5 Macia_Machava     1067.2538 212.8659 115.40  645.62284
##  INIA-73      Nhacoongo         1093.8123 213.5306 116.23  670.89675
##  IT97K-284-4  Nhacoongo         1118.8071 212.3123 114.12  698.22285
##  UC-CB27      Macia_Machava     1146.1091 213.5501 116.75  723.17485
##  IT-18        Macia_Machava     1148.5561 213.4814 115.88  725.72450
##  IT98K-1111-1 Macia_Machava     1164.8208 213.6071 116.73  741.77309
##  UC-CB46      Macia_Adelino     1190.5311 213.4851 115.80  767.68915
##  IT-18        Nhacoongo         1196.2705 213.4814 115.88  773.43886
##  UC-CB46      Nhacoongo         1235.9555 213.2155 115.18  813.62372
##  INIA-152     Macia_Machava     1239.1098 213.7555 116.53  815.76018
##  UC-CB46      Macia_Machava     1246.4771 213.2155 115.18  824.14537
##  INIA-152     Macia_Adelino     1284.9275 213.4738 116.33  862.12853
##  UC-CB27      UmbeluziStressado 1328.3779 213.3563 115.76  905.78983
##  IT98K-1111-1 UmbeluziStressado 1348.3902 212.6457 114.08  927.14379
##  INIA-73      UmbeluziStressado 1377.4359 213.6416 116.23  954.30071
##  IT98K-1105-5 Nhacoongo         1377.8540 212.8659 115.40  956.22305
##  IT-18        UmbeluziStressado 1400.5776 213.3006 116.21  978.11710
##  IT69KD-901   UmbeluziIrrigado  1424.4582 213.3224 115.55 1001.92884
##  INIA-41      Macia_Adelino     1438.7231 213.5401 116.02 1015.78093
##  IT-16        UmbeluziStressado 1450.3158 213.9875 117.16 1026.53077
##  UC-CB27      UmbeluziIrrigado  1475.3602 212.9806 114.65 1053.47306
##  INIA-73      UmbeluziIrrigado  1483.0058 212.9097 115.41 1061.28887
##  IT-16        UmbeluziIrrigado  1535.3689 213.6885 116.60 1112.15478
##  IT98K-1111-1 UmbeluziIrrigado  1542.8659 213.1575 115.62 1120.66581
##  INIA-41      Macia_Machava     1663.7967 213.0438 115.98 1241.83586
##  UC-CB46      UmbeluziStressado 1779.8452 213.5101 115.89 1356.95749
##  INIA-41      UmbeluziIrrigado  1842.2548 212.8510 115.20 1420.64580
##  INIA-41      UmbeluziStressado 1919.5881 212.9661 115.41 1497.75935
##  IT98K-1111-1 ChokweIrrigado    1968.2274 213.8460 117.32 1544.72864
##  UC-CB46      UmbeluziIrrigado  2002.6740 212.6761 115.11 1581.40786
##  IT98K-1105-5 UmbeluziIrrigado  2065.8614 212.8188 114.89 1644.30415
##  INIA-152     UmbeluziIrrigado  2112.2016 213.3949 115.85 1689.54033
##  IT98K-1105-5 UmbeluziStressado 2130.4133 213.4059 115.47 1707.71546
##  IT98K-1111-1 ChokweStressado   2243.5917 213.8507 116.61 1820.05673
##  INIA-41      ChokweStressado   2275.2091 212.8143 114.74 1853.65490
##  INIA-73      ChokweIrrigado    2303.3229 213.5745 116.18 1880.31855
##  INIA-152     UmbeluziStressado 2327.3996 213.0239 115.54 1905.46145
##  UC-CB27      ChokweStressado   2464.3505 213.2879 115.95 2041.90479
##  UC-CB27      ChokweIrrigado    2473.2456 213.3913 115.72 2050.58653
##  IT00K-96     ChokweIrrigado    2635.6529 213.4856 116.25 2212.82719
##  IT-16        ChokweStressado   2653.7807 213.7745 116.82 2230.40488
##  INIA-73      ChokweStressado   2678.5428 212.7546 114.72 2257.10603
##  IT-16        ChokweIrrigado    2714.7860 213.4026 115.99 2292.11494
##  IT97K-284-4  ChokweStressado   2818.0288 213.5762 116.35 2395.02778
##  INIA-41      ChokweIrrigado    2897.8775 212.3522 113.73 2477.19888
##  IT-18        ChokweIrrigado    2918.8710 212.7347 114.70 2497.47295
##  IT97K-284-4  ChokweIrrigado    3066.1619 214.0881 117.31 2642.18359
##  IT98K-1105-5 ChokweIrrigado    3166.2457 212.7774 114.03 2744.73650
##  IT-18        ChokweStressado   3278.5687 213.1497 115.45 2856.37770
##  INIA-152     ChokweIrrigado    3281.4112 212.8278 114.96 2859.83867
##  INIA-152     ChokweStressado   3334.8789 212.7797 115.10 2913.40717
##  IT00K-96     ChokweStressado   3356.0290 212.3933 113.73 2935.26899
##  IT98K-1105-5 ChokweStressado   3365.5194 213.2964 115.80 2943.05141
##  UC-CB46      ChokweStressado   3569.0641 213.3254 115.68 3146.53401
##  UC-CB46      ChokweIrrigado    3594.9186 212.7865 114.45 3173.40803
##   upper.CL .group                                
##   829.4328  1                                    
##   929.3576  12                                   
##   952.4313  1234                                 
##   987.4039  1 3                                  
##  1006.4636  1234                                 
##  1080.2736  1 3 5                                
##  1097.3063  12345678                             
##  1097.3884  12345678                             
##  1101.4992  12345678                             
##  1105.1429  12345678                             
##  1137.2840  1234 6  90                           
##  1187.4054  1234567890AB                         
##  1223.7075  12345 7 9 A C                        
##  1230.6995  1234567890ABCD                       
##  1232.1825  12345678                             
##  1273.2069  1234567890ABCDEF                     
##  1285.1440  1234567890ABCDEF                     
##  1317.6055  12345678      E                      
##  1349.4787  12345678      E                      
##  1353.8185  1234567890ABCDEFG                    
##  1370.8850  1234567890ABCDEFG                    
##  1386.5335  1234567890ABCDEFGH                   
##  1389.2855  1234567890ABCDEFGH                   
##  1417.5593  1234567890ABCDEFGHI                  
##  1433.1844  1234567890ABCDEFGHI                  
##  1441.7996  1234567890ABCDEFGHIJ                 
##  1451.4650  1234567890ABCDEFGHIJ                 
##  1458.7201  1234567890ABCDEFGHIJ                 
##  1462.0431  1234567890ABCDEFGHIJ                 
##  1488.8848  1234567890ABCDEFGHIJ                 
##  1516.7278  1234567890ABCDEFGHIJ                 
##  1539.3914  1234567890ABCDEFGHIJ                 
##  1569.0434  1234567890ABCDEFGHIJ                 
##  1571.3877  1234567890ABCDEFGHIJ                 
##  1587.8685  1234567890ABCDEFGHIJK                
##  1613.3730  1234567890ABCDEFGHIJK                
##  1619.1021  1234567890ABCDEFGHIJK                
##  1658.2873  1234567890ABCDEFGHIJK                
##  1662.4593  1234567890ABCDEFGHIJK                
##  1668.8089  1234567890ABCDEFGHIJK                
##  1707.7265  1234567890ABCDEFGHIJK                
##  1750.9660  1234567890ABCDEFGHIJKL               
##  1769.6366  1234567890ABCDEFGHIJKLM              
##  1800.5712  1234567890ABCDEFGHIJKLMN             
##  1799.4850  1234567890ABCDEFGHIJKLMN             
##  1823.0381  1234567890ABCDEFGHIJKLMNO            
##  1846.9875  1234567890ABCDEFGHIJKLMNO            
##  1861.6653  1234567890ABCDEFGHIJKLMNO            
##  1874.1008  1234567890ABCDEFGHIJKLMNO            
##  1897.2474  1234567890ABCDEFGHIJKLMNO            
##  1904.7228  1234567890ABCDEFGHIJKLMNO            
##  1958.5830  1234567890ABCDEFGHIJKLMNOP           
##  1965.0659  1234567890ABCDEFGHIJKLMNOP           
##  2085.7575  1234567890ABCDEFGHIJKLMNOPQ          
##  2202.7329   2 4 67890ABCDEFGHIJKLMNOPQR         
##  2263.8638    34567890ABCDEFGHIJKLMNOPQR         
##  2341.4169       6 8 0 B DEFGHIJKLMNOPQRS        
##  2391.7262      5 78  ABCDEFGHIJKLMNOPQR T       
##  2423.9402          90ABCD FGHIJKLMNOPQRSTU      
##  2487.4187            ABCD FGHIJKLMNOPQRSTUVWX   
##  2534.8628              CD FGHIJKLMNOPQRSTUVWX   
##  2553.1112                EFGHIJKLMNOPQRSTUVWX   
##  2667.1267                  GHIJKLMNOPQRSTUV     
##  2696.7634                   HIJKLMNOPQRSTU W    
##  2726.3273                    IJKLMNOPQRSTUVWXY  
##  2749.3378                     JKLMNOPQRSTUVWXYZa
##  2886.7962                      KLMNOPQRSTUVWX Z 
##  2895.9046                      KLMNOPQRSTUVWXY  
##  3058.4786                       LMNOPQRSTUVWXYZa
##  3077.1566                        MNOPQRSTUVWXYZa
##  3099.9796                         NOPQRSTUVWXYZa
##  3137.4571                          OPQRSTUVWXYZa
##  3241.0299                           PQRSTUVWXYZa
##  3318.5562                            QRSTUVWXYZa
##  3340.2690                            QRSTUVWXYZa
##  3490.1402                             RSTUVWXYZa
##  3587.7549                              S UVWXYZa
##  3700.7596                               TUVWXYZa
##  3702.9837                                UVWXYZa
##  3756.3507                                 V XYZa
##  3776.7891                                   XYZa
##  3787.9874                                  WXYZa
##  3991.5941                                    Y a
##  4016.4291                                     Za
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 84 estimates 
## significance level used: alpha = 0.05
cld(emmeans(gxemodel2, ~varietyname|environment))
## environment = ChokweIrrigado:
##  varietyname     emmean       SE     df   lower.CL  upper.CL .group
##  IT69KD-901    714.9043 213.2427 115.33  292.52460 1137.2840  1    
##  IT98K-1111-1 1968.2274 213.8460 117.32 1544.72864 2391.7262   2   
##  INIA-73      2303.3229 213.5745 116.18 1880.31855 2726.3273   23  
##  UC-CB27      2473.2456 213.3913 115.72 2050.58653 2895.9046   234 
##  IT00K-96     2635.6529 213.4856 116.25 2212.82719 3058.4786   234 
##  IT-16        2714.7860 213.4026 115.99 2292.11494 3137.4571   234 
##  INIA-41      2897.8775 212.3522 113.73 2477.19888 3318.5562    345
##  IT-18        2918.8710 212.7347 114.70 2497.47295 3340.2690    345
##  IT97K-284-4  3066.1619 214.0881 117.31 2642.18359 3490.1402    345
##  IT98K-1105-5 3166.2457 212.7774 114.03 2744.73650 3587.7549     45
##  INIA-152     3281.4112 212.8278 114.96 2859.83867 3702.9837     45
##  UC-CB46      3594.9186 212.7865 114.45 3173.40803 4016.4291      5
## 
## environment = ChokweStressado:
##  varietyname     emmean       SE     df   lower.CL  upper.CL .group
##  IT69KD-901    408.5862 212.4452 114.14  -12.26047  829.4328  1    
##  IT98K-1111-1 2243.5917 213.8507 116.61 1820.05673 2667.1267   2   
##  INIA-41      2275.2091 212.8143 114.74 1853.65490 2696.7634   2   
##  UC-CB27      2464.3505 213.2879 115.95 2041.90479 2886.7962   23  
##  IT-16        2653.7807 213.7745 116.82 2230.40488 3077.1566   234 
##  INIA-73      2678.5428 212.7546 114.72 2257.10603 3099.9796   234 
##  IT97K-284-4  2818.0288 213.5762 116.35 2395.02778 3241.0299   2345
##  IT-18        3278.5687 213.1497 115.45 2856.37770 3700.7596    345
##  INIA-152     3334.8789 212.7797 115.10 2913.40717 3756.3507     45
##  IT00K-96     3356.0290 212.3933 113.73 2935.26899 3776.7891     45
##  IT98K-1105-5 3365.5194 213.2964 115.80 2943.05141 3787.9874     45
##  UC-CB46      3569.0641 213.3254 115.68 3146.53401 3991.5941      5
## 
## environment = Macia_Adelino:
##  varietyname     emmean       SE     df   lower.CL  upper.CL .group
##  IT69KD-901    585.0126 212.7661 114.94  163.56158 1006.4636  1    
##  IT98K-1111-1  674.6159 213.4223 116.51  251.92560 1097.3063  12   
##  IT97K-284-4   765.4647 213.0184 115.20  343.52395 1187.4054  12   
##  IT00K-96      807.3334 213.7587 116.26  383.96731 1230.6995  12   
##  IT-16         862.7489 213.2524 115.43  440.35378 1285.1440  12   
##  IT-18         965.1424 212.7224 114.26  543.75121 1386.5335  12   
##  UC-CB27      1011.1723 213.0471 114.83  589.16026 1433.1844  12   
##  INIA-73      1020.4183 212.7172 114.25  599.03700 1441.7996  12   
##  IT98K-1105-5 1029.6298 212.9650 115.19  607.79455 1451.4650  12   
##  UC-CB46      1190.5311 213.4851 115.80  767.68915 1613.3730  12   
##  INIA-152     1284.9275 213.4738 116.33  862.12853 1707.7265  12   
##  INIA-41      1438.7231 213.5401 116.02 1015.78093 1861.6653   2   
## 
## environment = Macia_Machava:
##  varietyname     emmean       SE     df   lower.CL  upper.CL .group
##  IT69KD-901    674.8924 213.3063 115.59  252.39644 1097.3884  1    
##  IT97K-284-4   680.9149 212.3123 114.12  260.33064 1101.4992  1    
##  INIA-73       850.2913 213.5306 116.23  427.37579 1273.2069  12   
##  IT-16         967.4732 212.9415 114.59  545.66093 1389.2855  12   
##  IT00K-96     1040.3047 212.9071 114.73  618.56630 1462.0431  12   
##  IT98K-1105-5 1067.2538 212.8659 115.40  645.62284 1488.8848  12   
##  UC-CB27      1146.1091 213.5501 116.75  723.17485 1569.0434  12   
##  IT-18        1148.5561 213.4814 115.88  725.72450 1571.3877  12   
##  IT98K-1111-1 1164.8208 213.6071 116.73  741.77309 1587.8685  12   
##  INIA-152     1239.1098 213.7555 116.53  815.76018 1662.4593  12   
##  UC-CB46      1246.4771 213.2155 115.18  824.14537 1668.8089  12   
##  INIA-41      1663.7967 213.0438 115.98 1241.83586 2085.7575   2   
## 
## environment = Nhacoongo:
##  varietyname     emmean       SE     df   lower.CL  upper.CL .group
##  IT69KD-901    506.8616 213.3063 115.59   84.36557  929.3576  1    
##  UC-CB27       529.4971 213.5501 116.75  106.56281  952.4313  1    
##  INIA-41       683.1821 213.0438 115.98  261.22132 1105.1429  12   
##  IT98K-1111-1  930.7708 213.6071 116.73  507.72304 1353.8185  12   
##  IT-16         949.0727 212.9415 114.59  527.26042 1370.8850  12   
##  IT00K-96      995.8209 212.9071 114.73  574.08247 1417.5593  12   
##  INIA-152     1035.3705 213.7555 116.53  612.02091 1458.7201  12   
##  INIA-73      1093.8123 213.5306 116.23  670.89675 1516.7278  12   
##  IT97K-284-4  1118.8071 212.3123 114.12  698.22285 1539.3914  12   
##  IT-18        1196.2705 213.4814 115.88  773.43886 1619.1021  12   
##  UC-CB46      1235.9555 213.2155 115.18  813.62372 1658.2873  12   
##  IT98K-1105-5 1377.8540 212.8659 115.40  956.22305 1799.4850   2   
## 
## environment = UmbeluziIrrigado:
##  varietyname     emmean       SE     df   lower.CL  upper.CL .group
##  IT00K-96      810.6883 212.7889 114.99  389.19411 1232.1825  1    
##  IT97K-284-4   895.8138 212.9352 114.80  474.02221 1317.6055  1    
##  IT-18         927.1970 213.1870 115.02  504.91536 1349.4787  1    
##  IT69KD-901   1424.4582 213.3224 115.55 1001.92884 1846.9875  12   
##  UC-CB27      1475.3602 212.9806 114.65 1053.47306 1897.2474  12   
##  INIA-73      1483.0058 212.9097 115.41 1061.28887 1904.7228  12   
##  IT-16        1535.3689 213.6885 116.60 1112.15478 1958.5830  12   
##  IT98K-1111-1 1542.8659 213.1575 115.62 1120.66581 1965.0659  12   
##  INIA-41      1842.2548 212.8510 115.20 1420.64580 2263.8638   2   
##  UC-CB46      2002.6740 212.6761 115.11 1581.40786 2423.9402   2   
##  IT98K-1105-5 2065.8614 212.8188 114.89 1644.30415 2487.4187   2   
##  INIA-152     2112.2016 213.3949 115.85 1689.54033 2534.8628   2   
## 
## environment = UmbeluziStressado:
##  varietyname     emmean       SE     df   lower.CL  upper.CL .group
##  IT00K-96      565.3932 213.0577 115.40  143.38258  987.4039  1    
##  IT69KD-901    657.5039 213.4439 115.55  234.73427 1080.2736  12   
##  IT97K-284-4   801.4592 213.1804 115.54  379.21080 1223.7075  123  
##  UC-CB27      1328.3779 213.3563 115.76  905.78983 1750.9660  1234 
##  IT98K-1111-1 1348.3902 212.6457 114.08  927.14379 1769.6366  1234 
##  INIA-73      1377.4359 213.6416 116.23  954.30071 1800.5712   234 
##  IT-18        1400.5776 213.3006 116.21  978.11710 1823.0381   234 
##  IT-16        1450.3158 213.9875 117.16 1026.53077 1874.1008    34 
##  UC-CB46      1779.8452 213.5101 115.89 1356.95749 2202.7329     45
##  INIA-41      1919.5881 212.9661 115.41 1497.75935 2341.4169     45
##  IT98K-1105-5 2130.4133 213.4059 115.47 1707.71546 2553.1112     45
##  INIA-152     2327.3996 213.0239 115.54 1905.46145 2749.3378      5
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 12 estimates 
## significance level used: alpha = 0.05
estimatedmeans<-data.frame(emmeans(gxemodel2, ~varietyname|environment))

envmeans<-data.frame(emmeans(gxemodel2, ~environment))
## NOTE: Results may be misleading due to involvement in interactions

In the output, groups sharing a letter in the .group are not statistically different from each other.

7.3 Section 3 – Methodological Principles

When adjusting for covariates it is important to consider if the covariate being included is something that could be affected by the treatment variables, or whether it is something which affects the outcome independent of the treatments. If we were confident that striga infestation was not impacted by the choice of treatment then in this analysis